Quasi-projective characters in a block

Wolfgang Willems

Burkhard Külshammer's 60th birthday, Jena, July 22 -25, 2015

1

Essen, 198?

Marseille, in front of Notre Dame de la Garde, 1986?

1. Introduction

(A. Zalesski)

Def. a) An ordinary character Λ of a finite group G is called quasi-projective if

$$\Lambda = \sum_{\varphi \in \mathbf{IBr}_p(G)} a_{\varphi} \Phi_{\varphi} \text{ with } a_{\varphi} \in \mathbb{Z}$$

where Φ_{φ} denotes the ordinary character associated to the projective cover of the module afforded by φ . b) A *p*-Brauer character Φ is called quasi-projective if

$$\Phi = \left(\sum_{\varphi \in \mathsf{IBr}_p(G)} a_{\varphi} \Phi_{\varphi}\right)^{\circ}.$$

Def. We call a quasi-projective character Λ (resp. Φ) indecomposable if there is no splitting

$$\Lambda = \Lambda_1 + \Lambda_2 \qquad (\text{resp}.\Phi = \Phi_1 + \Phi_2)$$

with Λ_i (resp. Φ_i) \neq 0 and quasi-projective character.

Remark. An indecomposable quasi-projective character belongs to a block. To be brief we put

Iqp(B) = set of indecomposable quasi-projective ordinary characters of the *p*-block *B* (call that: Hilbert basis for the decomp. matrix of *B*)

IBqp(B) = set of indecomposable quasi-projective Brauer characters of B.

(call that: Hilbert basis for the Cartan matrix of B)

 $G = A_5, p = 2, B_0$ the principal block. Irr $(B_0) = \{\chi_1, \chi_2, \chi_3, \chi_5\}$ degrees: 1, 3, 3, 5 IBr₂ $(B_0) = \{\beta_1, \beta_2, \beta_3\}$ degrees: 1, 2, 2

$$|Iqp(B_0)| = 4 :$$

$$\Phi_1 - \Phi_3 = 1 + \chi_2,$$

$$\Phi_1 - \Phi_2 = 1 + \chi_3,$$

$$\Phi_2 = \chi_2 + \chi_5,$$

$$\Phi_3 = \chi_3 + \chi_5$$

$$|IBqp(B_0)| =6:$$

 $(3\Phi_1 - 2\Phi_2 - 2\Phi_3)^\circ = 4\beta_1$
 $(2\Phi_2 - \Phi - 1)^\circ = 2\beta_2$
 $(2\Phi_3 - \Phi_1)^\circ = 2\beta_3$
 $(\Phi_1 - \Phi_3)^\circ = 2\beta_1 + \beta_2$
 $(\Phi_1 - \Phi_3)^\circ = 2\beta_1 + \beta_3$
 $(\Phi_2 + \Phi_3 - \Phi_1)^\circ = \beta_2 + \beta_3$

 $G = PSL(2,7), p = 7, B_0$ the principal block. Irr $(B_0) = \{\chi_1, \chi_2, \chi_3, \chi_4, \chi_5\}$ degrees: 1, 3, 3, 6, 8 IBr₇ $(B_0) = \{\beta_1, \beta_2, \beta_3\}$ degrees: 1, 3, 5

$$|Iqp(B_0)| = 5:$$

1 + χ_4 , 1 + χ_2 + χ_3 , χ_4 + χ_5 , χ_2 + χ_3 + χ_5

 $|IBqp(B_0)| = 11$:

 $\begin{aligned} & 7\beta_1, 7\beta_2, 7\beta_3, \beta_1 + 4\beta_3, \beta_2 + 5\beta_3, 4\beta_1 + \beta_2, \beta_1 + \beta_2 + \\ & 2\beta_3, 2\beta_1 + \beta_3, 2\beta_2 + 3\beta_3, \beta_1 + 2\beta_2, 3\beta_2 + \beta_3 \end{aligned}$

G = McL, p = 2, B_0 the principal block $|Irr(B_0)| = 18$, $|IBr_2(B_0) = 8$

 $|Iqp(B_0)| = 38 = 2.19$

 $|IBqp(B_0)| = 8304 = 2^4.3.173$

Problems.

- What is the meaning of (indecomposable) quasiprojective?
- 2. What can we say about Iqp(B) or IBqp(B)?
- 3. Is there a reasonable good function in terms of B which bounds |Iqp(B)| or |IBqp(B)|?

2. Hilbert bases

Let D, C denote the decomposition resp.Cartan matrix of a block B.

Quasi-projective characters

$$\sum_{\varphi \in \mathsf{IBr}(B)} a_{\varphi} \Phi_{\varphi} = \sum_{\chi \in \mathsf{Irr}(B)} (\sum_{\varphi \in \mathsf{IBr}(B)} d_{\chi\varphi} a_{\varphi}) \chi.$$
$$= (Da)_{\chi} \ge 0$$

$$\varphi \in IBr(B)$$
 $\psi \in IBr(B) \underbrace{\varphi \in IBr(B)}_{=(Ca)_{\psi} \ge 0}$

Hilbert basis of a matrix $A \in (\mathbb{Z})_{k,l}$

Def.
$$cone(A) = \{x \in \mathbb{R}^l \mid Ax \ge 0\}$$

Facts.

a) (Gordon 1873, Hilbert 1890)

cone(A) is generated by a finite so-called integral Hilbertbasis; i.e.,

 $\exists h_1, \ldots, h_t \in cone(A) \cap \mathbb{Z}^l$ s.t. any $c \in cone(A) \cap \mathbb{Z}^l$ can be written as $c = \sum_{i=1}^t a_i h_i$ with $a_i \in \mathbb{N}_0$. b) (van der Corput, 1931) If kerA = 0, then a minimal integral Hilbertbasis is unique. Denote them by \mathcal{H}_A .

c) If kerA = 0, then $A\mathcal{H}_A$ are the indecomposable vectors in $A(cone(A) \cap \mathbb{Z}^l)$.

Applications.

•
$$D\mathcal{H}_D = Iqp(B)$$

•
$$C\mathcal{H}_C = IBqp(B)$$

Explicit computations. Software package 4ti2 (Hemmecke, Köppe, Malkin, Walter)

- 3. Indecomp. quasi-projective ordinary characters.
- quasi-projective character = p-vanishing character
- $|G|_p | \Lambda(1)$ if Λ is quasi-projective
- $\chi \in Irr(B)$ quasi-projective \Rightarrow B of defect zero
- $|Iqp(B)| \ge |IBr(B)|$

Def. A Brauer character φ is called quasi-liftable if there exists an ordinary character χ such that $\chi^{\circ} = b\varphi$ with $b \in \mathbb{N}$

Lemma. (cf. Navarro, 10.16) If $\Lambda = \sum_{\varphi} a_{\varphi} \Phi_{\varphi}$ is a quasi-projective character and φ is quasi-liftable, then $a_{\varphi} \ge 0$. (If $\chi^{\circ} = n\varphi$, then $na_{\varphi} = (\Lambda, n\varphi)^{\circ} = (\Lambda, \chi) \ge 0$.)

Example. $G = {}^{2}F_{4}(2)'\dot{2}$ and p = 2.

There exists a non-liftable $\beta \in IBr(G)$ and $\chi, \psi \in Irr(G)$ such that $\chi^{\circ} = 2\beta$ and $\psi^{\circ} = 3\beta$.

17

Theorem. Equivalent are:

a)
$$Iqp(B) = \{ \Phi_{\varphi} \mid \varphi \in IBr(B) \}.$$

b) Every $\beta \in IBr(B)$ is quasi-liftable.

Proof. b) \Rightarrow a) Navarro's Lemma or

•
$$D = \begin{pmatrix} n_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & n_l \\ & * & \end{pmatrix}$$

•
$$Da \ge 0 \ (a \in \mathbb{Z}^l) \Rightarrow a \ge 0$$

a) \Rightarrow b) Suppose that $\beta \in IBr(B)$ is not quasi-liftable.

• For each $\chi \in Irr(B)$ with $d_{\chi,\beta} \neq 0$ there exists a $\beta \neq \psi \in IBr(B)$ with $d_{\chi,\psi} \neq 0$.

•
$$b = \max \{ d_{\chi,\beta} \mid \chi \in Irr(B) \}$$

•
$$\Lambda = -\Phi_{\beta} + b \sum_{\varphi \neq \beta} \Phi_{\varphi}$$

•
$$(\Lambda, \chi) = -d_{\chi,\beta} + b \sum_{\varphi \neq \beta} d_{\chi,\varphi} \ge 0$$

• Λ quasi-projective, not projective character.

Question.

Are the following equivalent?

- a) $Iqp(B) = \{ \Phi_{\varphi} \mid \varphi \in IBr_p(B) \}.$
- b) Each $\varphi \in \operatorname{IBr}_p(B)$ is quasi-liftable.
- c) Each $\varphi \in IBr_p(B)$ is liftable.

Theorem.

Let *B* be a block with a cyclic defect group > 1. By χ_0 we denote the sum of exceptional irreducible characters of *B* (if such characters exist). Furthermore let $Irr^0(B)$ be the set consisting of χ_0 and all the non-exceptional irreducible characters of *B*. Then

$$\Lambda = \sum_{\varphi \in \mathbf{IBr}_p(B)} a_{\varphi} \Phi_{\varphi} \in \mathbf{Iqp}(B)$$

if and only if $\Lambda = \chi + \psi$ for $\chi, \psi \in \operatorname{Irr}^{0}(B)$ where the distance between χ and ψ in the Brauer tree is odd.

G = PSL(2, 17), p = 17, B_0 the principal 17-block

$$20 = |\operatorname{Iqp}(B_0)| \leq |\delta(B_0)| = 17$$

Question.

How to bound |Iqp(B)| in terms of invariants of B?

• If all $\varphi \in IBr(B)$ are quasi-liftable, then $Iqp(B) = \{ \Phi_{\varphi} | \varphi \in IBr(B) \}.$

•
$$l(B) = 1 \Rightarrow \operatorname{Iqp}(B) = \{\Phi_{\varphi}\}$$

• Does l(B) = 2 imply |Iqp(B)| = 2? ($G = 2.A_8, p = 3$, block #5)

Let
$$\Lambda = \sum_{\varphi \in \operatorname{IBr}(B)} a_{\varphi} \Phi_{\varphi} = \sum_{\chi \in \operatorname{Irr}(B)} b_{\chi} \chi \in \operatorname{Iqp}(B).$$

Minkowski 1896:

$$cone(D) = cone(\{a^1, \dots, a^m \mid 0 \neq a^i \in \mathbb{Z}^d\}),$$

where $m \leq \binom{k}{l-1}$

• a^i are solutions of l-1 linearily independent equations of Dx = 0.

•
$$\mathcal{H}_D \subseteq \{a^1, \dots a^m\} \cup$$

 $\{a \in cone(D) \cap \mathbb{Z}^d \mid a = \sum_i \lambda_i a^i, \lambda_i \in [0, 1)\}$

24

Ewald/Wessel '91:

• If
$$l \geq 2$$
, then

$$|a_arphi| \leq \, (l-1) \max_i \parallel a^i \parallel_\infty$$

4. Indecomp. quasi-projective Brauer characters

Theorem. Let d(B) denote the defect of the block B. a) For each $\varphi \in \operatorname{IBr}_p(B)$ there is a minimal p-power, say

 $p^{a(\varphi)}$ such that $p^{a(\varphi)}\varphi \in IBqp(B)$ where $a(\varphi) \leq d(B)$.

b) There exists $\varphi \in \operatorname{IBr}_p(B)$ with $a(\varphi) = d(B)$

Consequence. If $\varphi \in IBr(B)$, then

 $\overline{\varphi(x)} = \begin{cases} p^{a(\varphi)}\varphi(x) & \text{for } x \text{ a } p'\text{-element,} \\ 0 & \text{otherwise.} \end{cases}$

is a generalized character of B.

Example. $G = A_5$, p = 2, B_0 the principal block elementary divisors: 4,1,1 $2^{a(\varphi)}$ for $\varphi \in IBr(B_0)$: 4,2,2

Question. Does $a(\varphi) = 0$ for $\varphi \in IBr(B)$ imply that *B* is of defect 0?

Question. Can one characterize blocks B with |IBqp(B)| = |IBr(B)|?

Fact. We always have $a(\varphi) \ge d(B) - ht(\varphi)$ where $ht(\varphi) = \nu_p(\varphi(1)) - \nu_p(|G|) + d(B)$.

Question. Is

$$a(\varphi) = d(B) - ht(\varphi),$$

if G is p-solvable and $\varphi \in IBr(B)$?

Example. $G = McL, p = 2, \varphi \in IBr(B_0)$ of degree 7.2⁹.

•
$$|G|_2 = 2^7$$

•
$$a(\varphi) = |d(B) - ht(\varphi)| = 2$$

Happy Birthday