Symmetric bilinear forms in characteristic 2

John C. Murray

National University of Ireland Maynooth

Blocks 2015 celebrating Burkhard Külshammer's 60th birthday

John C. Murray (NUI Maynooth)

Symmetric Bilinear Forms

Blocks 2015 1 / 23

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<= E > < E >

< □ > < 凸

Outline

1 Motivation

- Vertices and Sources
- Bilinear Forms
- A question of B. Külshammer

2 Induction with Forms

- Symmetric Vertices
- Examples

3 Solvable Groups

- The Extended Nucleus
- Applications

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ∃ > < ∃ >

▲ □ ▶ ▲ 一 ▶

- In this talk G is a finite group, k is an algebraically closed field of characteristic p and p = 2 unless stated otherwise.
- Let M be an indecomposable kG-module with vertex V and V-source Z.

So *V* is a *p*-subgroup of *G*, *Z* is a *kV*-module, $M \mid \text{Ind}_V^G(Z)$, $Z \mid \text{Res}_V^G(M)$ and *V* is minimal subject to the existence of *Z*.

- The trivial kG-module k_G has Sylow p-vertices and trivial sources.
- *M* is projective if and only if V = 1.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- The dual of *M* is the *kG*-module $M^* = \text{Hom}_k(M, k)$.
- There is a *k*-isomorphism between $\text{Hom}_{kG}(M, M^*)$ and the space of *G*-invariant bilinear forms $b : M \times M \rightarrow k$.

Lemma (Gow, Willems)

If $p \neq 2$ each self-dual M is either symmetric or alternating. Moreover, the Krull-Schmidt theorem holds for symmetric/alternating modules.

If p = 2, alternating \equiv symmetric and symplectic \implies symmetric. The Krull-Schmidt theorem fails for symmetric modules.

Lemma (Fong)

If p = 2, every non-trivial self-dual simple kG-is symplectic.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◀◻▶◀▤▶◀▤▶◀▤▶

- Let (M, b_M) be a symmetric kG-module and let (L, b_L) be a symmetric kH-module, where $H \leq G$.
- Recall that $\operatorname{Ind}_{H}^{G}(L) = \bigoplus_{gH} g \otimes L$.

 $\operatorname{Res}_{H}^{G}(M, b_{M})$ is the restricted symmetric *kH*-module and $\operatorname{Ind}_{H}^{G}(L, b_{L})$ is the induced symmetric *kG*-module.

Permutation Modules

For $H \leq G$, and b_H a symmetric form on k_H , the cosets gH form an orthonormal basis for $\operatorname{Ind}_H^G(k_H, b_H)$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Extended Defect Groups of Real 2-blocks

- $kG = B_0 \oplus \cdots \oplus B_n$ where each B_i is a *p*-block of *G*.
- B_i has a defect group $D_i \leq G$, determined up to *G*-conjugacy.
- $D_i = 1$ iff $B_i = \text{End}_k(M_i)$ for some simple projective kG-module M_i .

Theorem (Gow)

If p = 2, each real B_i also has an extended defect group $E_i \leq G$. Then $[E_i : D_i] \leq 2$ and E_i is determined up to G-conjugacy.

Principal 2-block

The principal 2-block contains k_G . Its defect groups and extended defect groups are the Sylow 2-subgroups of G.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- Let *e* be a primitive idempotent in kG. So P = kGe is a pim.
- If t ∈ G is an involution, there is a symplectic bilinear form b_t on kG which has symplectic basis {g, gt}_{g∈G}.
- Let o be the contragredient map on kG; $g^{o} = g^{-1}$ for $g \in G$.

Theorem (Gow-Willems)

P has a symplectic form if and only if $e^t = e^o$, for some involution *t*. This occurs if and only if b_t is non-degenerate on *P*.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Its easy to see that $(kG, b_t) = \operatorname{Ind}_{\langle t \rangle}^G (k \langle t \rangle, b_t)$.

Theorem (M. 2009)

If P is simple and b_t is non-degenerate on P then P belongs to a real 2-block with defect group 1 and extended defect group $\langle t \rangle$.

So *t* is determined up to *G*-conjugacy; $\langle t \rangle$ is a 'symmetric vertex' of *P*.

B. Külshammer

Do other symmetric modules have symmetric vertices?

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Symmetric Vertices

• Suppose that *M*, *P* are of symmetric type.

Definition

 $T \leq G$ is a symmetric vertex of M if T is minimal such that $(M, b_M) \mid \operatorname{Ind}_T^G(L, b_L)$ for some b_M and symmetric kT-module (L, b_L) .

Theorem (M. 2014)

A symmetric vertex of M contains a vertex of M with index at most 2.

- k_G has Sylow 2-symmetric vertices; $P(k_G)$ has symmetric vertex 1.
- If $P \neq P(k_G)$ then each symmetric vertex of *P* has order 2.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Are symmetric vertices unique up to G-conjugacy?

Theorem (M. 2014)

Let T be a symmetric vertex of M and let b_M be a T-projective symmetric form on M. Then b_M is H-projective if and only if $T \leq_G H$.

Example (Symmetric vertices are not unique)

Let *S* be the unique 2-dimensional simple kD_{12} -module. Each non-central $C_2 \leq D_{12}$ is a symmetric vertex of P(S).

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let S be a self-dual simple kG-module, with symplectic form b_S .
- Let V be a vertex, let Z be a V-source and let T be a symmetric vertex of S which contains V.

Theorem (M., 2014)

The symmetric vertices of S are determined up to G-conjugacy and exactly one of the following holds:

(i) T = V and and $Z \cong Z^*$. (ii) [T : V] = 2 and $Z \cong Z^*$. (iii) [T : V] = 2 and $Z \cong Z^*$.

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- $End_k(S)$ is a primitive *G*-algebra.
- End_{kV}(S) has a unique maximal ideal \mathcal{M} corresponding to Z.
- End_{kV}(S)/M = End_k(M_S) where the multiplicity module M_S is a module for a twisted group algebra $k_{\#}N_G(V,Z)/V$.

The adjoint σ of b_S is an involution on $\operatorname{End}_{kH}(S)$ for all $H \leq G$. Now \mathcal{M}^{σ} is the maximal ideal of $\operatorname{End}_{kV}(S)$ corresponding to Z^* . So

- σ is an involution on $\operatorname{End}_k(M_S)$ if $Z \cong Z^*$ or
- σ is an involution on $\operatorname{End}_k(M_S) \times \operatorname{End}_k(M_S^*)$ if $Z \not\cong Z^*$.

Knörr

 M_S is a simple projective $k_{\#}N_G(V,Z)/V$ -module.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > :

- This occurs iff b_S is non-degenerate on some V-source Z.
- M_S lifts to the projective cover of the trivial $kN_G(V,Z)/V$ -module.

Theorem (M. 2014)

 $N_G(V,Z)/V$ has odd order and S belongs to the principal 2-block of G, S has multiplicity 1 as a component of $\operatorname{Ind}_V^G(Z)$ and S is the only non-degenerate component of $\operatorname{Ind}_V^G(Z, b_Z)$ that has vertex V.

• Note that if $Z \cong k_V$ then b_S is non-degenerate on Z iff $S \cong k_G$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆!

Example

S a self-dual simple kG-module with Sylow 2-vertices e.g. $S = k_G$.

Example (Müller, Zimmermann)

For $n \ge 3$ the natural kS_{2n} -module $D^{[2n-1,1]}$ has vertex $V \in Syl_2(S_{2n})$ and V-source $\operatorname{Res}_V^{S_{2n}}(S)$.

Example (Danz, Külshammer, Zimmermann)

The kS_5 -module $D^{[3,2]}$ has Klein-four vertex $V \le A_4$ and $\operatorname{Res}_V^{S_5}(D^{[3,2]}) = Z_1 \perp Z_2$ with $Z_i \cong Z_i^*$ but $Z_1 \ncong Z_2$.

▲□▶▲□▶▲≣▶▲≣▶ = 少�?

- b_S is degenerate on Z. So Z has even multiplicity in S_V .
- M_S lifts to a self-dual simple projective $kN_G(V, Z)/V$ -module which has symmetric vertex T/V.

Corollary

If S is a self-dual simple kG-module which has a $N_G(V)$ -invariant V-source then the multiplicity module M_S is an Alperin weight of G.

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ .

Example

S a self-dual non-trivial simple kG-module with trivial sources.

Example (Danz, Külshammer, Zimmermann)

The kS_7 -module $D^{[4,3]}$ shares a vertex and sources with $D^{[3,2]}$. Res $_V^{S_7}(D^{[4,3]}) = (Z_1 \oplus Z_1) \perp (Z_2 \oplus Z_2)$ with each Z_i degenerate.

Example (M., Navarro)

G a solvable group and *S* is a non-trivial simple *kG*-module with self-dual sources.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣!

- M_S need not lift to a $kN_G(V, Z)/V$ -module.
- Let $N_G^*(V, Z)$ be the stabilizer of $\{Z, Z^*\}$ in $N_G(V)$.
- There is an 'extended' multiplicity module for $k_{\#}N_G^*(V,Z)/V$.

Theorem (M. 2014)

 $Z^T \cong Z^*$. In particular $N_G^*(V, Z)/V$ splits over $N_G(V, Z)/V$ and T/V is a complement to $N_G(V, Z)/V$ in $N_G^*(V, Z)/V$.

 $\mathcal{O} \mathcal{O}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣!

Example (Külshammer, Zimmermann, Robinson)

Let H = GL(n, 2), $n \ge 3$. Set $G = H\langle \tau \rangle$ where τ is transpose inverse. The natural *kH*-module induces a self-dual simple *kG*-module *S*. Each vertex of *S* is in Syl₂(*H*) but no source of *S* is self-dual.

For example when n = 4, $H = A_8$ and $G = S_8$. Then S is the 8-dimensional spin module $D^{[5,3]}$. Its sources are 4-dimensional.

Example (Dade)

Let $G = 3^{1+2}$: SD₁₆ and let S be a self-dual simple kG-module, with dim(S) = 6. Then S has vertex Q₈ and non self-dual sources.

Construct 3^{1+2} from a symplectic form on \mathbb{F}_3^2 . Then SD_{16} is a Sylow 2 of GL(2,3) and $Q_8 = SD_{16} \cap Sp(2,3)$. Let *N* be a simple 3-dimensional $k3^{1+2}$: Q_8 -module. Then $S = N^G$ and N_{Q_8} is a Q_8 -source of *S*.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

For the remainder of the talk *G* is a finite solvable group. We discuss some joint work with G. Navarro.

Theorem (Fong-Swan)

Every irreducible Brauer character of G can be lifted to an ordinary irreducible character of G.

-

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ ▶

- Let S be a simple kG-module with Brauer character θ .
- Let $\chi \in Irr(G)$ be a 'lift' of θ .

_emma

There exists $W \leq G$ and $\eta \in Irr(W)$ such that $p \nmid \eta(1)$ and $\eta^G = \chi$.

• The Sylow p-subgroups of W are determined up to G-conjugacy as they are vertices of S.

Example

Let $\chi \in B_{p'}(G)$ be an Isaacs lift of θ and (W, η) an Isaacs nucleus of χ . Then η is a p'-special character in the sense of Gajendragadkar.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

《口》《卽》《言》《言》 []]

- From now on p = 2 and S is non-trivial and self-dual.
- Let θ and χ be as above.

Theorem (M., Navarro 2015)

There exists $U \leq G$ and $\delta \in Irr(U)$ with δ real, $\delta^G = \chi$ and $\delta(1)/2$ odd.

 The Sylow 2-subgroups of U are determined up to G-conjugacy as they are symmetric vertices of S.

Example

Let $\chi \in B_{2'}(G)$ be an Isaacs lift of θ with Isaacs nucleus (W, η) . Then $\eta \neq \overline{\eta}$ and we can take $U = N_G^*(W, \eta)$ and $\delta = \eta^U$.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ .

Solution to a question

•
$$\nu(\chi) := \frac{1}{|G|} \sum_{g \in G} \chi(g^2)$$
 the Frobenius-Schur indicator of χ .

• $\nu(\chi)$ indicates if χ is non-real or real-valued and the character of a real or non-real representation.

W. Willems asked if each real-valued irreducible Brauer character of a solvable group can be lifted to the character of a real representation.

Theorem (Isaacs (?), M., Navarro 2015)

Let χ be the Isaacs canonical lift of θ . Then $\nu(\chi) = +1$.

Example

 $G = C_3 : C_4$ non-abelian, $\theta \in \operatorname{IBr}_2(G)$ with $\theta(1) = 2$. Then θ has two lifts $\chi_1, \chi_2 \in \operatorname{Irr}(G)$ with $\nu(\chi_1) = +1$ and $\nu(\chi_2) = -1$.

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< ∃ >

- ₹ ₹ ▶

< □ ▶ < @ ▶

Theorem (M., Navarro 2015)

 $T \setminus V$ contains an involution iff P(S) affords a symplectic geometry.

Example (c.f. Gow-Willems)

 $G = (C_3 : C_4) \wr C_2$ and dim(S) = 4. Then $S \cong D_8$ and $T \cong D_8 : C_2$. So P(S) has a symplectic geometry.

Open Problem

Does the above theorem generalize to arbitrary finite groups?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへで

- S. Danz, B. Külshammer, R. Zimmermann, 'On vertices of simple modules for symmetric groups of small degrees', *J. Algebra* 320 (2008) 68–707.
- E. C. Dade, 'A self-dual simple module with a non self-dual source', email July, 2015.
- R. Gow, W. Willems, 'Quadratic geometries, projective modules and idempotents', *J. Algebra* 160 (1993) 257–272.
- B. Külshammer, .R. Zimmermann, 'On a question of Willems', preprint 2003, 2 pages.
- J. Murray, 'Symmetric Vertices for Symmetric Modules in Characteristic 2', submitted, January 2015.
- W. Willems, Duality and forms in representation theory, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., 95, Birkhï¿¹/₂user, Basel, 1991, 509-520.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆