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Vertices and Sources

@ In this talk G is a finite group, k is an algebraically closed field of
characteristic p and p = 2 unless stated otherwise.

@ Let M be an indecomposable kG-module with vertex V and

V-source Z.
So V is a p-subgroup of G, Z is a kV-module, M | Ind$(2),
Z | Res(M) and V is minimal subject to the existence of Z.

@ The trivial kG-module kg has Sylow p-vertices and trivial sources.
@ M is projective if and only if V = 1.
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Duality and Bilinear Forms

@ The dual of M is the kG-module M* = Homy (M, k).

@ There is a k-isomorphism between Hom,g(M, M*) and the space
of G-invariant bilinear forms b: M x M — k.

Lemma (Gow, Willems)

If p £ 2 each self-dual M is either symmetric or alternating. Moreover,
the Krull-Schmidt theorem holds for symmetric/alternating modules.

If p = 2, alternating=symmetric and symplectic =—- symmetric.
The Krull-Schmidt theorem fails for symmetric modules. }

Lemma (Fong)

If p = 2, every non-trivial self-dual simple kG-is symplectic.
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Induction and Restriction

@ Let (M, by) be a symmetric kG-module and let (L, b;) be a
symmetric kH-module, where H < G.

@ Recall that Ind&(L) = P g ® L.
gH

Res$(M, by) is the restricted symmetric kH-module and Ind&(L, b, ) is
the induced symmetric kG-module.

Permutation Modules
For H < @G, and by a symmetric form on kg, the cosets gH form an
orthonormal basis for Ind&(ky, by).
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Extended Defect Groups of Real 2-blocks

@ KkG=By3d--- P B,where each B; is a p-block of G.
@ B; has a defect group D; < @G, determined up to G-conjugacy.
@ D; =1 iff B; = End,(M;) for some simple projective kG-module M;.

Theorem (Gow)
If p =2, each real B; also has an extended defect group E; < G.
Then [E; : D;] < 2 and E; is determined up to G-conjugacy.

Principal 2-block
The principal 2-block contains kg. lts defect groups and extended
defect groups are the Sylow 2-subgroups of G.
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PIMs and Involutions

@ Let e be a primitive idempotent in kG. So P = kGe is a pim.

@ If t € Gis an involution, there is a symplectic bilinear form by
on kG which has symplectic basis {g, gt} < -

@ Let © be the contragredient map on kG; g° = g~ for g € G.

Theorem (Gow-Willems)

P has a symplectic form if and only if ! = €°, for some involution t.
This occurs if and only if b; is non-degenerate on P.

John C. Murray (NUI Maynooth) Symmetric Bilinear Forms Blocks 2015



Forms and Induction

Its easy to see that (kG, br) = Indf}, (k(1), by).

Theorem (M. 2009)

If P is simple and b; is non-degenerate on P then P belongs to a real
2-block with defect group 1 and extended defect group (t).

So t is determined up to G-conjugacy; (f) is a ‘'symmetric vertex’ of P. ]

B. Kilshammer
Do other symmetric modules have symmetric vertices?
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Symmetric Vertices

@ Suppose that M, P are of symmetric type.

Definition

T < Gis a symmetric vertex of M if T is minimal such that
(M, bu) | Ind$(L, b,) for some by and symmetric kT-module (L, b;).

Theorem (M. 2014)
A symmetric vertex of M contains a vertex of M with index at most 2.

@ kg has Sylow 2-symmetric vertices; P(kg) has symmetric vertex 1.
@ If P # P(kg) then each symmetric vertex of P has order 2.
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Are symmetric vertices unique up to G-conjugacy?

Theorem (M. 2014)

Let T be a symmetric vertex of M and let by, be a T-projective
symmetric form on M. Then by, is H-projective ifand only if T <g H.

Example (Symmetric vertices are not unique)

Let S be the unique 2-dimensional simple kD>-module.
Each non-central C, < Dj» is a symmetric vertex of P(S).
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@ Let S be a self-dual simple kG-module, with symplectic form bg.

@ Let V be a vertex, let Z be a V-source and let T be a symmetric
vertex of S which contains V.

Theorem (M., 2014)

The symmetric vertices of S are determined up to G-conjugacy and
exactly one of the following holds:

(I) T=VandandZ = Z*.
(i) [T:V]=2andZ = Z*.
(i) [T:V]=2andZ % Z~.
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Multiplicity Modules

@ Endy(S) is a primitive G-algebra.
@ Endyy(S) has a unique maximal ideal M corresponding to Z.

@ Endky(S)/ M = Endk(Ms) where the multiplicity module Mg is a
module for a twisted group algebra k,xNg(V,Z)/ V.

The adjoint ¢ of bg is an involution on Endyy(S) for all H < G.
Now M? is the maximal ideal of End,y(S) corresponding to Z*. So

@ o is an involution on Endy(Ms) if Z = Z* or
@ o is an involution on Endk(Ms) x Endy(Mg) if £ 2 Z~.

v

Ms is a simple projective kyNg(V, Z)/V-module. \
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Case () V=T

@ This occurs iff bg is non-degenerate on some V-source Z.
@ Mz lifts to the projective cover of the trivial kNg(V, Z)/V-module.

Theorem (M. 2014)

Ng(V,Z)/V has odd order and S belongs to the principal 2-block of G,
S has multiplicity 1 as a component of Ind$(Z) and S is the only
non-degenerate component of Ind$(Z, bz) that has vertex V.

@ Note that if Z = ky, then bg is non-degenerate on Z iff S = kg.
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Case (i) Examples

S a self-dual simple kG-module with Sylow 2-vertices e.g. S = kg. \

Example (Muller, Zimmermann)

For n > 3 the natural kS,,-module D2"~1.1] has vertex V € Syl,(Sz))
and V-source ResﬁZ”(S).

Example (Danz, Kilshammer, Zimmermann)

The kSs-module D32l has Klein-four vertex V < A, and
Res s (D2 = Z, | Z, with Z; = Z* but Z; 3 2.
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Case (i) [T:V]=2and Z = Z*

@ bg is degenerate on Z. So Z has even multiplicity in Sy.

@ Mjg lifts to a self-dual simple projective kNg(V,Z)/V-module
which has symmetric vertex T/V.

If S is a self-dual simple kG-module which has a Ng(V)-invariant
V' -source then the multiplicity module Mg is an Alperin weight of G.
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Case (ii) Examples

S a self-dual non-trivial simple kG-module with trivial sources. l

Example (Danz, Kilshammer, Zimmermann)

The kS7-module D43l shares a vertex and sources with DI3:2],
Resy (D3 = (Z; @ Z;) L (Z @ Z») with each Z; degenerate.

Example (M., Navarro)

G a solvable group and S is a non-trivial simple kG-module with
self-dual sources.
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Case (iii) L 22 Z*

@ Ms need not lift to a kNg(V, Z)/V-module.
@ Let N3;(V, Z) be the stabilizer of {Z,Z*} in Ng(V).
@ There is an ‘extended’” multiplicity module for ky N5 (V, Z)/ V.

Theorem (M. 2014)

Z" = Z*. In particular N5(V,Z)/V splits over Ng(V,Z)/V and T/V is
a complement to Ng(V,Z)/V in N;(V,Z)/ V.

John C. Murray (NUI Maynooth) Symmetric Bilinear Forms Blocks 2015 17 /23



Case (iii) Examples

Example (Kilshammer, Zimmermann, Robinson)

Let H=GL(n,2), n > 3. Set G = H(r) where 7 is transpose inverse.
The natural kH-module induces a self-dual simple kG-module S.
Each vertex of Sis in Syl,(H) but no source of S is self-dual.

For example when n=4, H = Ag and G = Sg. Then S is the
8-dimensional spin module DI®>3!. Its sources are 4-dimensional.

Example (Dade)

Let G = 312 : SD45 and let S be a self-dual simple kG-module, with
dim(S) = 6. Then S has vertex Qg and non self-dual sources.

Construct 3'2 from a symplectic form on IF% Then SDq¢ is a Sylow 2
of GL(2,3) and Qg = SD1g N Sp(2,3). Let N be a simple 3-dimensional
k3172 : Qg-module. Then S = N and N, is a Qg-source of S.
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Solvable Groups

For the remainder of the talk G is a finite solvable group.
We discuss some joint work with G. Navarro. J

Theorem (Fong-Swan)

Every irreducible Brauer character of G can be lifted to an ordinary
irreducible character of G.
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Nucleus

@ Let S be a simple kG-module with Brauer character 6.
@ Let x € Irr(G) be a ‘lift’ of 6.

Lemma

There exists W < G and n € Irr(W) such that p t n(1) and n® = .

@ The Sylow p-subgroups of W are determined up to G-conjugacy
as they are vertices of S.

Let x € By(G) be an Isaacs lift of 8 and (W, n) an Isaacs nucleus of .
Then 7 is a p’-special character in the sense of Gajendragadkar.
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Extended Nucleus

@ From now on p = 2 and S is non-trivial and self-dual.
@ Let 8 and x be as above.

Theorem (M., Navarro 2015)

There exists U < G and § < Irr(U) with § real, §¢ = x and §(1) /2 odd.

@ The Sylow 2-subgroups of U are determined up to G-conjugacy
as they are symmetric vertices of S.

Let x € Bo/(@G) be an Isaacs lift of 6 with Isaacs nucleus (W, n).
Then n # 7 and we can take U = N;(W,7) and § = nY.
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Solution to a question

@ v(y):= ‘1@ >~ x(g?) the Frobenius-Schur indicator of .
ge@G

@ v(x) indicates if x is non-real or real-valued and the character of a
real or non-real representation.

W. Willems asked if each real-valued irreducible Brauer character of a
solvable group can be lifted to the character of a real representation. }

Theorem (Isaacs (?), M., Navarro 2015)

Let x be the Isaacs canonical lift of 6. Then v(x) = +1.

G = C3 : C4 non-abelian, 6 € IBro(G) with 6(1) = 2. Then 6 has two
lifts x1, x2 € Irr(G) with v(x1) = +1 and v(x2) = —1.
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Projective modules

Theorem (M., Navarro 2015)
T'\ 'V contains an involution iff P(S) affords a symplectic geometry.

Example (c.f. Gow-Willems)
G=(C3:C4)0Coanddim(S)=4. ThenS=ZDgand T = Dg : C>.
So P(S) has a symplectic geometry.

Open Problem
Does the above theorem generalize to arbitrary finite groups?
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